SQL-H

2 months & 10 questions on new Aster Big Analytics Appliance

Posted on: December 18th, 2012 by Teradata Aster No Comments

 

It’s been about two months since Teradata launched the Aster Big Analytics Appliance and since then we have had the opportunity to showcase the appliance to various customers, prospects, partners, analysts, journalists etc. We are pleased to report that since the launch the appliance has already received the “Ventana Big Data Technology of the Year” award and has been well received by industry experts and customers alike.

Over the past two months, starting with the launch tweetchat, we have received numerous enqueries around the appliance and think now is a good time to answer the top 10 most frequently asked questions about the new Teradata Aster offering. Without further ado here are the top 10 questions and their answers:

WHAT IS THE TERADATA ASTER BIG ANALYTICS APPLIANCE?

The Aster Big Analytics Appliance is a powerful, ready to-run platform that is pre-configured and optimized specifically for big data storage and analysis. A purpose built, integrated hardware and software solution for analytics at big data scale, the appliance runs Teradata Aster patented SQL-MapReduce® and SQL-H technology on a time-tested, fully supported Teradata hardware platform. Depending on workload needs, it can be exclusively configured with Aster nodes, Hortonworks Data Platform (HDP) Hadoop nodes, or a mixture of Aster and Hadoop nodes. Additionally, integrated backup nodes are available for data protection and high availability

WHO WILL BENEFIT MOST BY DEPLOYING THE APPLIANCE?

The appliance is designed for organizations looking for a turnkey integrated hardware and software solution to store, manage and analyze structured and unstructured data (ie: multi-structured data formats). The appliance meets the needs of both departmental and enterprise-wide buyers and can scale linearly to support massive data volumes.

WHY DO I NEED THIS APPLIANCE?

This appliance can help you gain valuable insights from all of your multi-structured data. Using these insights, you can optimize business processes to reduce cost and better serve your customers. More importantly, these insights can help you innovate by identifying new markets, new products, new business models etc. For example, by using the appliance a telecommunications company can analyze multi-structured customer interaction data across multiple channels such as web, call center and retail stores to identify the path customers take to churn. This insight can be used proactively to increase customer retention and improve customer satisfaction.

WHAT’S UNIQUE ABOUT THE APPLIANCE?

The appliance is an industry first in tightly integrating SQL-MapReduce®, SQL-H and Apache Hadoop. The appliance delivers a tightly integrated hardware and software solution to store, manage and analyze big data. The appliance delivers integrated interfaces for analytics and administration, so all types of multi-structured data can be quickly and easily analyzed through SQL based interfaces. This means that you can continue to use your favorite BI tools and all existing skill sets while deploying new data management and analytics technologies like Hadoop and MapReduce. Furthermore, the appliance delivers enterprise class reliability to allow technologies like Hadoop to now be used for mission critical applications with stringent SLA requirements.

WHY DID TERADATA BRING ASTER & HADOOP TOGETHER?

With the Aster Big Analytics Appliance, we are not just putting Aster and Hadoop in the same box. The Aster Big Analytics Appliance is the industry’s first unified big analytics appliance, providing a powerful, ready to run big analytics and discovery platform that is pre-configured and optimized specifically for big data analysis. It provides intrinsic integration between the Aster Database and Apache Hadoop, and we believe that customers will benefit the most by having these two systems in the same appliance.

Teradata’s vision stems from the Unified Data Architecture. The Aster Big Analytics Appliance offers customers the flexibility to configure the appliance to meet their needs. Hadoop is best for capture, storing and refining multi-structured data in batch whereas Aster is a big analytics and discovery platform that helps derive new insights from all types of data. Hadoop is best for capture, storing and refining multi-structured data in batch. Depending on the customer’s needs, the appliance can be configured with all Aster nodes, all Hadoop nodes or a mix of the two.

WHAT SKILLS DO I NEED TO DEPLOY THE APPLIANCE?

The Aster Big Analytics appliance is an integrated hardware and software solution for big data analytics, storage, and management, which is also designed as a plug and play solution that does not require special skill sets.

DOES THE APPLIANCE MAKE DATA SCIENTISTS OR DATA ANALYSTS IRRELEVANT?

Absolutely not. By integrating the hardware and software in an easy to use solution and providing easy to use interfaces for administration and analytics, the appliance allows data scientists to spend more time analyzing data.

In fact, with this simplified solution, your data scientists and analysts are freed from the constraints of data storage and management and can now spend their time on value added insights generation that ultimately leads to a greater fulfillment of your organization’s end goals.

HOW IS THE APPLIANCE PRICED?

Teradata doesn’t disclose product pricing as part of its standard business operating procedures. However, independent research conducted by industry analyst Dr. Richard Hackathorn, president and founder, Bolder Technology Inc., confirms that on a TCO and Time-to-Value basis the appliance presents a more attractive option vs. commonly available do-it-yourself solutions. http://teradata.com/News-Releases/2012/Teradata-Big-Analytics-Appliance-Enables-New-Business-Insights-on--All-Enterprise-Data/

WHAT OTHER ASTER DEPLOYMENT OPTIONS ARE AVAILABLE?

Besides deploying via the appliance, customers can also acquire and deploy Aster as a software only solution on commodity hardware] or in a public cloud.

WHERE CAN I GET MORE INFORMATION?

You can learn more about the Big Analytics Appliance via http://asterdata.com/big-analytics-appliance/  – home to release information, news about the appliance, product info (data sheet, solution brief, demo) and Aster Express tutorials.

 

Join the conversation on Twitter for additional Q&A with our experts:

Manan Goel @manangoel | Teradata Aster @asterdata

 

For additional information please contact Teradata at http://www.teradata.com/contact-us/

 

Back in 2005, when we first founded Aster Data, our vision was to take some of the latest technology innovations – including MPP shared-nothing architectures; Linux-based commodity hardware; and novel analytical interfaces like Google’s MapReduce – and bring them to mainstream enterprises. This vision translated into a strategy focused not only on big data innovations, but also on delivering technologies that make big data viable for enterprise environments. SQL-MapReduce®, our industry-leading patented technology that combines standard SQL processing with a native MapReduce execution environment, is one example of how we make big data enterprise ready.

Today we have completed another major milestone on providing value to our customers by announcing a major innovation: Aster SQL-H™, a seamless way to execute SQL & SQL-MapReduce on Apache™ Hadoop™ data.

This is a significant step forward from what was state-of-the-art until yesterday. What was missing? A common DBMS-Hadoop connector operating at the physical layer. This means that getting data from Hadoop to a database required a Hadoop expert in the middle to do the data cleansing and the data type translation. If the data was not 100% clean (which is the case in most circumstances) a developer was needed to get it to a consistent, proper form. Besides wasting the valuable time of that expert, this process meant that business analysts couldn’t directly access and analyze data in Hadoop clusters. Other database connectors require duplicating the data into HDFS by using proprietary formats; a cumbersome and expensive approach by any measure.

SQL-H, an industry-first, solves all those problems.

First, we have integrated Aster’s metadata engine with Hadoop’s emerging metadata standard, HCatalog. This means that data stored in Hadoop using Pig, Hive & HBase can be “seen” in an Aster system as if they are just another Aster view. The business implication is that a business analyst using standard SQL or a BI tool can have full and seamless access to Hadoop data through the Aster’s standard ODBC/JDBC connector and Aster’s SQL engine. There is no need to have a human in the middle to translate the data or ensure its consistency; and no need to file tickets or call up experts to get the data the business needs. Everything happens transparently, seamlessly, and instantly. This is an industry first, since today all available Hadoop tools either do not provide standard SQL interfaces that are well optimized, do not provide native BI compatibility, or require manual data translation and movement from Hadoop to a third party system. None of these approaches are viable options for SQL & BI execution on Hadoop data, thus making it hard for enterprises to get value from Hadoop.

Secondly, SQL-H provides a high-performance, type-safe data connector, that can take a SQL or SQL-MapReduce query that involves Hadoop data, automatically select the minimum subset of data in Hadoop that is required for execution of the query, and run the query on the Aster system. The performance of running SQL and SQL-MapReduce analytics in Aster is significantly higher than Hadoop because (a) Aster can optimize data partitioning and distribution, thus reducing network transfers and overhead; (b) Aster’s engine can keep statistics about the data and use that to optimize execution of both SQL & MapReduce; (c) Aster’s SQL queries are cost-based-optimized which means that it can handle very complex SQL, including SQL produced by BI tools, very efficiently.

In addition, one can take advantage of SQL-H to apply the 50+ pre-build SQL-MapReduce apps that Teradata Aster provides on Hadoop data, thus doing big data analytics that are impossible to do in every other database without having to write a single line of Java MapReduce code! These apps include functions for path & pattern analysis, statistics, graph, text analysis, and more.

Teradata Aster is committed to groundbreaking product innovation as the key strategy in maintaining our #1 position in the big analytics market. SQL-H is another important step that we expect will make Hadoop and big data analytics much more palatable for enterprise environments, allowing business analysts, SQL power-users & BI tool users to analyze Hadoop data without having to learn about Hadoop interfaces and code.

If you want to find out more we’ll be talking about SQL-H at Hadoop Summit, on webcast taking place June 21st, at the upcoming Big Analytics 2012 events in Chicago & New York, and at the annual Teradata Partners event.